イマジネーションの訓練                       戻る

 当HPがいつもお世話になっているHN「GAI」さんからの出題です。
                                         (平成26年6月8日付け)

 平面上の2定点A、Bからの動点Pの軌跡はよく知られているように、

    AP+BP=一定 ---> Pは楕円  、 |AP−BP|=一定 -----> Pは双曲線

 では、この2定点を2定直線(L1,L2)に変え、動点Pと直線の距離を点Pからそれぞれの
直線L1、L2への垂線の足をH1、H2とするとき、PH1、PH2 を指すものとする。

 このとき、

 PとL1の距離+PとL2の距離=一定  、|PとL1の距離−PとL2の距離|=一定

の条件であるとき、それぞれ動点Pの軌跡はどのようになるか?





























(答) 工事中

 S(H)さんからのコメントです。(平成26年6月8日付け)

 和が一定と束縛されたときは長円なので、「長円」に似た言葉から、求める図形の名は、
長方形。


 GAI さんからのコメントです。(平成26年6月8日付け)

 ハイ!S(H)さん、正解です。S(H)さんのイマジネーションは超健在です。