・連分数表示と2次無理数                    GAI 氏

 2次無理数を正則(分子が常に1)連分数で表示した時、サイクル長4で繰り返すパターンで、
数字{1,2,3,4}を一個ずつ含むすべての順列パターンで何の無理数がその現象を引き起こせ
るかを調べてみた。

[1234]=>(9+2*sqrt(39))/15
[4321]=>(9+2*sqrt(39))/5
  [1243]=>(33+7*sqrt(53))/58
[3421]=>(33+7*sqrt(53))/26
 
[1324]=>(33+21*sqrt(5))/62
[4231]=>(33+21*sqrt(5))/18
[1342]=>(25+7*sqrt(53))/58
[2431]=>(25+7*sqrt(53))/34
 
[1423]=>(29+21*sqrt(5))/62
[3241]=>(29+21*sqrt(5))/22
[1432]=>(6+2*sqrt(39))/15
[2341]=>(6+2*sqrt(39))/8
 
[2134]=>(43+7*sqrt(53))/34
[4312]=>(43+7*sqrt(53))/22
[2143]=>(5+sqrt(39))/4
[3412]=>(10+2*sqrt(39))/7
 
[2314]=>(39+21*sqrt(5))/38
[4132]=>(39+21*sqrt(5))/18
[2413]=>(37+21*sqrt(5))/38
[3142]=>(37+21*sqrt(5))/22
 
[3124]=>(45+7*sqrt(53))/26
[4213]=>(45+7*sqrt(53))/22
[3214]=>(11+2*sqrt(39))/7
[4123]->(11+2*sqrt(39))/5

 何かしら規則がありそうな、無いような?


 らすかるさんからのコメントです。(令和4年3月10日付け)

 約分してしまうと規則性がわからなくなってしまうことが往々にしてありますね。

 [2143]は、[3412]と分子が合っていないので、(10+2*sqrt(39))/8にすることにして、そして、
分子に sqrt(39) があるものだけやけに分母が小さいので、他と揃えるために、分子分母を
4倍し、以下のように並び替えると、規則性がいくつか見えてきます。

[1324]=>(33+21*sqrt(5))/62
[1423]=>(29+21*sqrt(5))/62
[3241]=>(29+21*sqrt(5))/22
[3142]=>(37+21*sqrt(5))/22
[2413]=>(37+21*sqrt(5))/38
[2314]=>(39+21*sqrt(5))/38
[4132]=>(39+21*sqrt(5))/18
[4231]=>(33+21*sqrt(5))/18
[1234]=>(36+8*sqrt(39))/60
[1432]=>(24+8*sqrt(39))/60
[2341]=>(24+8*sqrt(39))/32
[2143]=>(40+8*sqrt(39))/32
[3412]=>(40+8*sqrt(39))/28
[3214]=>(44+8*sqrt(39))/28
[4123]->(44+8*sqrt(39))/20
[4321]=>(36+8*sqrt(39))/20
[1243]=>(33+7*sqrt(53))/58
[1342]=>(25+7*sqrt(53))/58
[2431]=>(25+7*sqrt(53))/34
[2134]=>(43+7*sqrt(53))/34
[4312]=>(43+7*sqrt(53))/22
[4213]=>(45+7*sqrt(53))/22
[3124]=>(45+7*sqrt(53))/26
[3421]=>(33+7*sqrt(53))/26

・2番目と4番目を入れ替えると、分子の整数項だけ変わる。このとき「4番目と整数項の増
 減が一致」⇔「2番目と整数項の増減が逆」となっているが、これについては、連分数の性
 質を考えると当然。また、変化前と変化後の整数項を足すと(連分数の先頭の値)×(分母)
 となっているのも連分数の性質から導かれる。

・逆順にすると分母だけ変わる

・それぞれのグループで、連分数の先頭の値が小さいほど分母が大きい
(先頭の値1,2,3,4に対して(62,38,22,18)(60,32,28,20)(58,34,26,22))

・それぞれのグループで、分母の最小値と最大値を足すと80
 さらに残りの二つを足すと60

・分子の無理数項は、

  21*sqrt(5)=sqrt(47^2-2^2) 、8*sqrt(39)=sqrt(50^2-2^2) 、7*sqrt(53)=sqrt(51^2-2^2)

 のように、いずれも √(n^2-2^2) という形で表せる。


 GAI さんからのコメントです。(令和4年3月15日付け)

 {1,2,3,4,5}での全順列を5サイクルとする連分数を与える無理数調査です。

[13425] "=>" (89+5*sqrt(557))/158
[52431] "=>" (89+5*sqrt(557))/38
[15243] "=>" (69+5*sqrt(557))/158
[34251] "=>" (69+5*sqrt(557))/58
[24315] "=>" (101+5*sqrt(557))/98
[51342] "=>" (101+5*sqrt(557))/38
[25134] "=>" (95+5*sqrt(557))/98
[43152] "=>" (95+5*sqrt(557))/50
[31524] "=>" (105+5*sqrt(557))/58
[42513] "=>" (105+5*sqrt(557))/50
[12453] "=>" (17+sqrt(697))/30
[35421] "=>" (85+5*sqrt(697))/68
[13542] "=>" (13+sqrt(697))/30
[24531] "=>" (65+5*sqrt(697))/88
[21354] "=>" (111+5*sqrt(697))/88
[45312] "=>" (111+5*sqrt(697))/58
[31245] "=>" (119+5*sqrt(697))/68
[54213] "=>" (119+5*sqrt(697))/48
[42135] "=>" (121+5*sqrt(697))/58
[53124] "=>" (121+5*sqrt(697))/48
[14235] "=>" (85+sqrt(13457))/164
[53241] "=>" (85+sqrt(13457))/38
[15324] "=>" (79+sqrt(13457))/164
[42351] "=>" (79+sqrt(13457))/44
[23514] "=>" (97+sqrt(13457))/92
[41532] "=>" (97+sqrt(13457))/44
[24153] "=>" (87+sqrt(13457))/92
[35142] "=>" (87+sqrt(13457))/64
[32415] "=>" (105+sqrt(13457))/64
[51423] "=>" (105+sqrt(13457))/38
[13245] "=>" (89+sqrt(14401))/162
[54231] "=>" (89+sqrt(14401))/40
[13524] "=>" (85+sqrt(14401))/156
[42531] "=>" (85+sqrt(14401))/46
[14253] "=>" (71+sqrt(14401))/156
[35241] "=>" (71+sqrt(14401))/60
[15423] "=>" (73+sqrt(14401))/162
[32451] "=>" (73+sqrt(14401))/56
[23154] "=>" (97+sqrt(14401))/96
[45132] "=>" (97+sqrt(14401))/52
[24135] "=>" (101+sqrt(14401))/100
[53142] "=>" (101+sqrt(14401))/42
[24513] "=>" (190+sqrt(14401))/96
[31542] "=>" (190+sqrt(14401))/56
[25314] "=>" (99+sqrt(14401))/100
[41352] "=>" (99+sqrt(14401))/46
[31425] "=>" (109+sqrt(14401))/60
[52413] "=>" (109+sqrt(14401))/42
[42315] "=>" (111+sqrt(14401))/52
[51324] "=>" (111+sqrt(14401))/40
[12435] "=>" (97+sqrt(15877))/154
[53421] "=>" (97+sqrt(15877))/42
[15342] "=>" (57+sqrt(15877))/154
[23351] "=>" (57+sqrt(15877))/82
[21534] "=>" (107+sqrt(15877))/82
[43512] "=>" (107+sqrt(15877))/54
[34215] "=>" (113+sqrt(15877))/74
[51243] "=>" (113+sqrt(15877))/42
[35124] "=>" (109+sqrt(15877))/74
[42153] "=>" (109+sqrt(15877))/54
[14325] "=>" (171+sqrt(53365))/326
[52341] "=>" (171+sqrt(53365))/74
[15234] "=>" (155+sqrt(53363))/326
[43251] "=>" (155+sqrt(53363))/90
[23415] "=>" (199+sqrt(53365))/186
[51432] "=>" (199+sqrt(53365))/74
[25143] "=>" (173+sqrt(53365))/186
[34152] "=>" (173+sqrt(53365))/126
[32514] "=>" (205+sqrt(53365))/126
[41523] "=>" (205+sqrt(53365))/90
[13254] "=>" (167+sqrt(59053))/318
[45231] "=>" (167+sqrt(59053))/98
[14523] "=>" (151+sqrt(59053))/318
[32541] "=>" (151+sqrt(59053))/114
[23145] "=>" (205+sqrt(59053))/198
[54132] "=>" (205+sqrt(59053))/86
[25413] "=>" (191+sqrt(59053))/198
[31452] "=>" (191+sqrt(59053))/114
[41325] "=>" (225+sqrt(59053))/98
[52314] "=>" (225+sqrt(59053))/86
[12345] "=>" (195+sqrt(65029))/314
[54321] "=>" (195+sqrt(65029))/86
[12534] "=>" (185+sqrt(65029))/302
[43521] "=>" (185+sqrt(65029))/102
[14352] "=>" (117+sqrt(65029))/302
[25341] "=>" (117+sqrt(65029))/170
[15432] "=>" (119+sqrt(65029))/314
[23451] "=>" (119+sqrt(65029))/162
[21435] "=>" (223+sqrt(65029))/170
[53412] "=>" (223+sqrt(65029))/90
[21543] "=>" (205+sqrt(65029))/162
[34512] "=>" (205+sqrt(65029))/142
[32154] "=>" (221+sqrt(65029))/142
[45123] "=>" (221+sqrt(65029))/114
[34125] "=>" (227+sqrt(65029))/150
[52143] "=>" (227+sqrt(65029))/90
[35214] "=>" (223+sqrt(65029))/150
[41253] "=>" (223+sqrt(65029))/102
[43215] "=>" (235+sqrt(65029))/114
[51234] "=>" (235+sqrt(65029))/86
[12354] "=>" (185+sqrt(67085))/310
[45321] "=>" (185+sqrt(67085))/106
[14532] "=>" (125+sqrt(67085))/310
[23541] "=>" (125+sqrt(67085))/166
[21453] "=>" (207+sqrt(67085))/166
[35412] "=>" (207+sqrt(67085))/146
[32145] "=>" (231+sqrt(67085))/146
[54123] "=>" (231+sqrt(67085))/94
[41235] "=>" (239+sqrt(67085))/106
[53214] "=>" (239+sqrt(67085))/94
[12543] "=>" (171+sqrt(69173))/298
[34521] "=>" (171+sqrt(69173))/134
[13452] "=>" (127+sqrt(69173))/298
[25431] "=>" (127+sqrt(69173))/178
[21345] "=>" (229+sqrt(69173))/178
[54312] "=>" (229+sqrt(69173))/94
[31254] "=>" (231+sqrt(69173))/134
[45213] "=>" (231+sqrt(69173))/118
[43125] "=>" (241+sqrt(69173))/118
[52134] "=>" (241+sqrt(69173))/94


 Dengan kesaktian Indukmu さんからのコメントです。(令和4年3月15日付け)

 分母分子を調節すれば、いずれも、√(n^2+2^2) の項が出てくるのですね、(らすかるさん
が4項のときに示唆したことが5項でも。)



  以下、工事中!



              投稿一覧に戻る